Læreplan i matematikk fellesfag (MAT1-04)
Utgått
Denne læreplanen er utgått.
Kompetansemål etter 1T – Vg1 studieførebuande utdanningsprogram
Tal og algebra
- tolke, bearbeide, vurdere og drøfte det matematiske innhaldet i ulike tekstar
- vurdere, velje og bruke matematiske metodar og verktøy til å løyse problem frå ulike fag og samfunnsområde og reflektere over, vurdere og presentere løysingane på ein formålstenleg måte
- rekne med rotuttrykk, potensar med rasjonal eksponent og tal på standardform, bokstavuttrykk, formlar, parentesuttrykk og rasjonale og kvadratiske uttrykk med tal og bokstavar, faktorisere kvadratiske uttrykk, bruke kvadratsetningane og lage fullstendige kvadrat
- omforme uttrykk og løyse likningar, ulikskapar og likningssystem av første og andre grad og enkle likningar med eksponential- og logaritmefunksjonar, både ved rekning og med digitale verktøy
- omforme ei praktisk problemstilling til ei likning, ein ulikskap eller eit likningssystem, løyse det matematiske problemet både med og utan digitale verktøy, presentere og grunngje løysinga og vurdere gyldigheitsområde og avgrensingar
Geometri
- gjere greie for definisjonane av sinus, cosinus og tangens og bruke trigonometri til å berekne lengder, vinklar og areal i vilkårlege trekantar
- bruke geometri i planet til å analysere og løyse samansette teoretiske og praktiske problem med lengder, vinklar og areal
- lage og bruke skisser og teikningar til å formulere problemstillingar, i oppgåveløysing og til å presentere og grunngje løysingane, med og utan bruk av digitale verktøy
Sannsyn
- formulere, eksperimentere med og drøfte uniforme og ikkje-uniforme sannsynsmodellar
- berekne sannsyn ved å telje opp gunstige og moglege utfall, systematisere oppteljingar ved hjelp av krysstabellar, venndiagram og val-tre og bruke addisjonssetninga og produktsetninga
Funksjonar
- gjere greie for funksjonsomgrepet og kunne omsetje mellom ulike representasjonar av funksjonar
- berekne nullpunkt, ekstremalpunkt, skjeringspunkt og gjennomsnittleg vekstfart, finne tilnærma verdiar for momentan vekstfart og gje nokre praktiske tolkingar av desse aspekta
- gjere greie for definisjonen av den deriverte, bruke definisjonen til å utleie ein derivasjonsregel for polynomfunksjonar og bruke denne regelen til å drøfte funksjonar
- lage, tolke og gjere greie for funksjonar som beskriv praktiske problemstillingar, analysere empiriske funksjonar og finne uttrykk for tilnærma lineære samanhengar, med og utan bruk av digitale verktøy
- bruke digitale verktøy til å framstille og analysere kombinasjonar av polynomfunksjonar, rotfunksjonar, rasjonale funksjonar, eksponentialfunksjonar og potensfunksjonar
10 av 14